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Participants: 34 PPA individuals (19 females; 12 IvPPA, 12 nfvPPA, 7 svPPA, 1 mixed, 2 unclassifiable) length effects, but not with the sensorimotor cluster (p = 0.598). Figure 4. Volume of parietal SMG/AG cluster vs length effect scores.
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Test (BNT; Williams et al., 1989)
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Battery for Adults (ABA2; Dabul, 2000) Table 1. Demographics of PPA participants.
m 20 triplets of words, such as “thick, thicken, thickening”
m Length effect scores (difference 1n total item scores between the longest and shortest words
in each triplet)
“* Speech language pathologist (SLP) ratings: for expressive aphasia, AOS, and dysarthria
> Based on audio recordings of BNT, ABA2, and picture description
> Using an 1n-house scale of 0-3 (0 = absent, 3 = severe)
¢ Neuroimaging: T1-weighted MPRAGE structural scans
Analysis 1: Neural underpinnings of speech and language disorders
“  Whole-brain voxel-based morphometry (VBM) on the T1-weighted images using FSL-VBM (Douaud
et al., 2007) =>» 1dentify voxels significantly correlated (p <.05) with each SLP ratings, controlling for

left PrCG, the motor cortex.
left PoCG, the somatosensory cortex.
left SMG, associated with phonological WM.
left AG, associated with attentional control and serial order representation and processing.
The neural data indicates that speech motor planning consists of multiple dissociable sub-processes.
> Novel evidence of the role of SMG/AG in speech motor planning from PPA.
“* Phonological WM, as measured by length effect, was uniquely associated with the SMG/AG (and not sensorimotor areas).
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Future directions
% Investigate the other processes that are involved in speech motor planning, in particular the one(s) supported by the sensorimotor cluster.

< Investigate whether if the phonological working memory involved in speech motor planning is input-/output-specific, using a picture naming

the other two .ratings , , , , , , task (output phonological WM) and a WM probe task (input phonological WM).
> Correction for multiple comparison: permutation-based non-parametric testing using

threshold-free cluster enhancement (TFCE)
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