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❖ Speech motor planning: critical in speech production; takes place after phonological/phonetic encoding 
and before speech motor execution.

❖ Apraxia of speech (AOS): a disorder that 
affects speech motor planning ➔ distorted speech 
sounds, substitutions, insertions, inconsistent errors, 
groping behaviors, and deviations in tone, stress, or 
rhythm.
➢ Typically co-occurs with aphasia 
(higher-level language disorder) and dysarthria 
(motor execution disorder).

❖ However, there is no consensus in the neural substrates underlying speech motor planning.
➢ Post-stroke AOS: associated with lesions to left precentral gyrus (PrCG) (Basilakos et al, 2015, 

2018; Takakura et al., 2019).
➢ Neurodegenerative disease: left premotor cortex and supplemental motor cortex (Utianski et al., 

2018; Cordella et al., 2019).
❖ The specific processes involved in speech motor planning are often underspecified.
❖ This study: investigated AOS in individuals with Primary Progressive Aphasia (PPA, a 

neurodegenerative disorder affecting language), a less studied population. 
➢ Address issues specifically concerning the PPA phenotypes, evaluate if more diffuse damage 

profiles can provide additional insights into the nature of the speech planning processes
Research questions:
1. Which brain areas are uniquely associated with AOS in PPA?
2. What do the areas associated with AOS reveal about the specific processes that are impaired?

Introduction

Participants: 34 PPA individuals (19 females; 12 lvPPA, 12 nfvPPA, 7 svPPA, 1 mixed, 2 unclassifiable)
Data: 
❖ Behavioral data

➢ Oral picture naming: Boston Naming 
Test (BNT; Williams et al., 1989)

➢ Single word repetition: subtest 2 of Apraxia
Battery for Adults (ABA2; Dabul, 2000)

■ 20 triplets of words, such as “thick, thicken, thickening”
■ Length effect scores (difference in total item scores between the longest and shortest words 

in each triplet)
❖ Speech language pathologist (SLP) ratings: for expressive aphasia, AOS, and dysarthria

➢ Based on audio recordings of BNT, ABA2, and picture description
➢ Using an in-house scale of 0-3 (0 = absent, 3 = severe)

❖ Neuroimaging: T1-weighted MPRAGE structural scans
Analysis 1: Neural underpinnings of speech and language disorders
❖ Whole-brain voxel-based morphometry (VBM) on the T1-weighted images using FSL-VBM (Douaud 

et al., 2007) ➔ identify voxels significantly correlated (p < .05) with each SLP ratings, controlling for 
the other two ratings
➢ Correction for multiple comparison: permutation-based non-parametric testing using 

threshold-free cluster enhancement (TFCE)
Analysis 2: Relationship between volume of significant clusters and SLP ratings
❖ Multiple linear regression analysis ➔ test if each cluster of significant voxels accounted for unique 

variance in SLP ratings
➢ SLP ratings ~ cluster 1 volume + cluster 2 volume + …

Analysis 3: Brain areas associated with length effect
❖ Multiple linear regression analysis ➔ evaluate if length effects were uniquely associated with specific 

brain areas
➢ Length effect ~ cluster 1 volume + cluster 2 volume + …

Methods

Table 1. Demographics of PPA participants.

Analysis 1: Neural underpinnings of speech and language disorders

❖ Expressive aphasia: associated with bilateral, left-lateralized cortical volumes in the temporal lobes.
❖ Dysarthria: no voxels associated with dysarthria ratings at p < .05, likely due to small sample size (ony 4 PPA participants with dysarthria 

diagnosis).
❖ AOS: associated with cortical volume in the left PrCG, postcentral gyrus (PoCG), 

supramarginal gyrus (SMG), and angular gyrus (AG).

Analysis 2: Relationship between volume of significant clusters and SLP ratings
❖ The sensorimotor PrCG/PoCG cluster (p = 0.006) and the parietal 

SMG/AG cluster (p = 0.003) both accounted for unique variance in AOS ratings, 
suggesting that multiple processes contribute to speech motor planning.

Analysis 3: Brain areas associated with length effect
❖ Length effect score (phonological working memory): associated with volume of 

the parietal cluster (p = 0.003) - larger cortical volumes associated with smaller 
length effects, but not with the sensorimotor cluster (p = 0.598).

❖ AOS was significantly correlated with cortical volume in 
➢ left PrCG, the motor cortex.
➢ left PoCG, the somatosensory cortex.
➢ left SMG, associated with phonological WM.
➢ left AG, associated with attentional control and serial order representation and processing.
➢ The neural data indicates that speech motor planning consists of multiple dissociable sub-processes.
➢ Novel evidence of the role of SMG/AG in speech motor planning from PPA.

❖ Phonological WM, as measured by length effect, was uniquely associated with the SMG/AG (and not sensorimotor areas).

Future directions
❖ Investigate the other processes that are involved in speech motor planning, in particular the one(s) supported by the sensorimotor cluster.
❖ Investigate whether if the phonological working memory involved in speech motor planning is input-/output-specific, using a picture naming 

task (output phonological WM) and a WM probe task (input phonological WM).

Discussion
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Figure 1. Processes and relevant disorders in speech production.
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Figure 2. VBM results: Voxels significantly associated with expressive aphasia ratings.

Figure 3. VBM results: Voxels significantly associated with AOS ratings.

Table 2. Clusters associated with expressive aphasia and AOS ratings.

Figure 4. Volume of parietal SMG/AG cluster vs length effect scores.
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